Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Year range
1.
Nat Prod Res ; : 1-9, 2022 Feb 19.
Article in English | MEDLINE | ID: covidwho-20241290

ABSTRACT

Phytochemical investigation of the whole plants of Vernonia gratiosa Hance. led in the isolation and identification of two new stigmastane-type steroidal glucosides (1-2), namely vernogratiosides A (1), and B (2). Their chemical structures were fully elucidated based on 1 D/2D NMR spectroscopic, HR-ESI-MS data analyses, and by producing derivatives by chemical reactions. The binding potential of the isolated compounds to replicase protein - main protease of SARS-CoV-2 were examined using the molecular docking simulations. Our results show that the isolated steroidal glucosides (1-2) bind to the substrate-binding site of SARS-CoV-2 main protease with binding affinities of -7.2 and -7.6 kcal/mol, respectively, as well as binding abilities equivalent to N3 inhibitor that has already been reported (-7.5 kcal/mol).

2.
Int J Environ Res Public Health ; 19(1)2021 12 28.
Article in English | MEDLINE | ID: covidwho-1580804

ABSTRACT

The research aims at washing processes as possible sources of microplastics, specifical microfibers in wastewater, and the behavior of the virus particles SARS-CoV-2 in wastewater after the washing process as well as their ability to sorb to the surface of microfibers, released from washing processes. The conclusions of the research point to the ability of the virus to attach to possible solid impurities such as textile fibers (microfibers) occurring in the sewer and to the ability of wash water to influence their possible occurrence in the sewer. The highest efficiency (more than 99%) of removal virus particles was after washing process, using liquid washing powder, and washing soda. These findings may gradually contribute to a better understanding of the behavior of the virus particles in the sewer.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics , Plastics , SARS-CoV-2 , Textiles , Wastewater , Water Pollutants, Chemical/analysis
3.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2201.00237v1

ABSTRACT

Hydroxychloroquine (HCQ) is used to prevent or treat malaria caused by mosquito bites. Recently, the drug has been suggested to treat COVID-19, but that has not been supported by scientific evidence. The information regarding the drug efficacy has flooded social networks, posting potential threats to the community by perverting their perceptions of the drug efficacy. This paper studies the reactions of social network users on the recommendation of using HCQ for COVID-19 treatment by analyzing the reaction patterns and sentiment of the tweets. We collected 164,016 tweets from February to December 2020 and used a text mining approach to identify social reaction patterns and opinion change over time. Our descriptive analysis identified an irregularity of the users' reaction patterns associated tightly with the social and news feeds on the development of HCQ and COVID-19 treatment. The study linked the tweets and Google search frequencies to reveal the viewpoints of local communities on the use of HCQ for COVID-19 treatment across different states. Further, our tweet sentiment analysis reveals that public opinion changed significantly over time regarding the recommendation of using HCQ for COVID-19 treatment. The data showed that high support in the early dates but it significantly declined in October. Finally, using the manual classification of 4,850 tweets by humans as our benchmark, our sentiment analysis showed that the Google Cloud Natural Language algorithm outperformed the Valence Aware Dictionary and sEntiment Reasoner in classifying tweets, especially in the sarcastic tweet group.


Subject(s)
COVID-19
4.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3866636

Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.15.21249810

ABSTRACT

Multiple studies have demonstrated the negative impact of cancer care delays during the COVID-19 pandemic, and transmission mitigation techniques are imperative for continued cancer care delivery. To gauge the effectiveness of these measures at the University of Pennsylvania, we conducted a longitudinal study of SARS-CoV-2 antibody seropositivity and seroconversion in patients presenting to infusion centers for cancer-directed therapy between 5/21/2020 and 10/8/2020. Participants completed questionnaires and had up to five serial blood collections. Of 124 enrolled patients, only two (1.6%) had detectable SARS-CoV-2 antibodies on initial blood draw, and no initially seronegative patients developed newly detectable antibodies on subsequent blood draw(s), corresponding to a seroconversion rate of 0% (95%CI 0.0-4.1%) over 14.8 person-years of follow up, with a median of 13 healthcare visits per patient. These results suggest that cancer patients receiving in-person care at a facility with aggressive mitigation efforts have an extremely low likelihood of COVID-19 infection.


Subject(s)
Neoplasms , COVID-19
6.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3732374

ABSTRACT

The response to the global pandemic of SARS-CoV-2 that causes COVID-19 disease has been an unprecedented mobilization of global scientific and medical effort in an unusual race for effective treatments and vaccines. Such a sense of urgency and intensity could however be potentially undermined without a general bigger picture of the whole landscape. In order to provide such an overall landscape, we set out to build a comprehensive tracker of global treatment and vaccine development on an interactive web application that presents a dynamic and up-to-date inventory of treatments and vaccines in various stages of clinical development. An additional layer of expert curation is applied to the raw data to categorize and curate treatments and vaccines to reveal intrinsic similarities and patterns. The combination of these features on the web application makes it a unique curated tracker that provides insights to a broad range of audiences from institutional organizers, research investigators, to general public.Availability: This curated web tracker is available at https://racetoacure.stanford.eduConflict of Interest: The authors declare no competing interests.Funding: Funding support for this project came from internal funds, no external funds were received or requested.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.14.20174961

ABSTRACT

Cancer patients are a vulnerable population postulated to be at higher risk for severe COVID-19 infection. Increased COVID-19 morbidity and mortality in cancer patients may be attributable to age, comorbidities, smoking, healthcare exposure, and cancer treatments, and partially to the cancer itself. Most studies to date have focused on hospitalized patients with severe COVID-19, thereby limiting the generalizability and interpretability of the association between cancer and COVID-19 severity. We compared outcomes of SARS-CoV-2 infection in 323 patients enrolled prior to the pandemic in a large academic biobank (n=67 cancer patients and n=256 non-cancer patients). After adjusting for demographics, smoking status, and comorbidities, a diagnosis of cancer was independently associated with higher odds of hospitalization (OR 2.16, 95% CI 1.12-4.18) and 30-day mortality (OR 5.67, CI 1.49-21.59). These associations were primarily driven by patients with active cancer. These results emphasize the critical importance of preventing SARS-CoV-2 exposure and mitigating infection in cancer patients.


Subject(s)
COVID-19 , Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL